model { for(i in 1:N){ mu_M[i] <- alpha*x[i]*x[i] M[i] ~ dnorm(mu_M[i],prec1) mu_M1[i] <- alpha*(x[i]+deltax)*(x[i]+deltax) M1[i] ~ dnorm(mu_M1[i],prec1) mu_y[i]<- c*x[i]+beta*M[i] y[i] ~ dnorm(mu_y[i],prec2) mu_y1[i]<- c*(x[i]+deltax)+beta*M[i] y1[i] ~ dnorm(mu_y1[i],prec2) mu_y2[i]<- c*x[i]+beta*(M[i]+deltam) y2[i] ~ dnorm(mu_y2[i],prec2) ie[i]<-(mu_M1[i]-mu_M[i])/deltax*(mu_y2[i]-mu_y[i])/deltam de[i]<-(mu_y1[i]-mu_y[i])/deltax te[i]<-ie[i]+de[i] } alpha ~ dnorm(0.0,0.000001) beta ~ dnorm(0.0,0.000001) c ~ dnorm(0.0,0.000001) var1 ~ dgamma(1,0.1) var2 ~ dgamma(1,0.1) prec1 <-1/var1 prec2 <-1/var2 } }